mirror of
https://github.com/krahets/hello-algo.git
synced 2024-12-27 11:16:28 +08:00
63 lines
1.7 KiB
Dart
63 lines
1.7 KiB
Dart
|
/**
|
||
|
* File: unbounded_knapsack.dart
|
||
|
* Created Time: 2023-08-11
|
||
|
* Author: liuyuxin (gvenusleo@gmail.com)
|
||
|
*/
|
||
|
|
||
|
import 'dart:math';
|
||
|
|
||
|
/* 完全背包:动态规划 */
|
||
|
int unboundedKnapsackDP(List<int> wgt, List<int> val, int cap) {
|
||
|
int n = wgt.length;
|
||
|
// 初始化 dp 表
|
||
|
List<List<int>> dp = List.generate(n + 1, (index) => List.filled(cap + 1, 0));
|
||
|
// 状态转移
|
||
|
for (int i = 1; i <= n; i++) {
|
||
|
for (int c = 1; c <= cap; c++) {
|
||
|
if (wgt[i - 1] > c) {
|
||
|
// 若超过背包容量,则不选物品 i
|
||
|
dp[i][c] = dp[i - 1][c];
|
||
|
} else {
|
||
|
// 不选和选物品 i 这两种方案的较大值
|
||
|
dp[i][c] = max(dp[i - 1][c], dp[i][c - wgt[i - 1]] + val[i - 1]);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return dp[n][cap];
|
||
|
}
|
||
|
|
||
|
/* 完全背包:状态压缩后的动态规划 */
|
||
|
int unboundedKnapsackDPComp(List<int> wgt, List<int> val, int cap) {
|
||
|
int n = wgt.length;
|
||
|
// 初始化 dp 表
|
||
|
List<int> dp = List.filled(cap + 1, 0);
|
||
|
// 状态转移
|
||
|
for (int i = 1; i <= n; i++) {
|
||
|
for (int c = 1; c <= cap; c++) {
|
||
|
if (wgt[i - 1] > c) {
|
||
|
// 若超过背包容量,则不选物品 i
|
||
|
dp[c] = dp[c];
|
||
|
} else {
|
||
|
// 不选和选物品 i 这两种方案的较大值
|
||
|
dp[c] = max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return dp[cap];
|
||
|
}
|
||
|
|
||
|
/* Driver Code */
|
||
|
void main() {
|
||
|
List<int> wgt = [1, 2, 3];
|
||
|
List<int> val = [5, 11, 15];
|
||
|
int cap = 4;
|
||
|
|
||
|
// 动态规划
|
||
|
int res = unboundedKnapsackDP(wgt, val, cap);
|
||
|
print("不超过背包容量的最大物品价值为 $res");
|
||
|
|
||
|
// 状态压缩后的动态规划
|
||
|
int resComp = unboundedKnapsackDPComp(wgt, val, cap);
|
||
|
print("不超过背包容量的最大物品价值为 $resComp");
|
||
|
}
|