mirror of
https://github.com/krahets/hello-algo.git
synced 2024-12-26 11:46:29 +08:00
663 lines
20 KiB
Markdown
663 lines
20 KiB
Markdown
|
# 二元樹
|
|||
|
|
|||
|
<u>二元樹(binary tree)</u>是一種非線性資料結構,代表“祖先”與“後代”之間的派生關係,體現了“一分為二”的分治邏輯。與鏈結串列類似,二元樹的基本單元是節點,每個節點包含值、左子節點引用和右子節點引用。
|
|||
|
|
|||
|
=== "Python"
|
|||
|
|
|||
|
```python title=""
|
|||
|
class TreeNode:
|
|||
|
"""二元樹節點類別"""
|
|||
|
def __init__(self, val: int):
|
|||
|
self.val: int = val # 節點值
|
|||
|
self.left: TreeNode | None = None # 左子節點引用
|
|||
|
self.right: TreeNode | None = None # 右子節點引用
|
|||
|
```
|
|||
|
|
|||
|
=== "C++"
|
|||
|
|
|||
|
```cpp title=""
|
|||
|
/* 二元樹節點結構體 */
|
|||
|
struct TreeNode {
|
|||
|
int val; // 節點值
|
|||
|
TreeNode *left; // 左子節點指標
|
|||
|
TreeNode *right; // 右子節點指標
|
|||
|
TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
|
|||
|
};
|
|||
|
```
|
|||
|
|
|||
|
=== "Java"
|
|||
|
|
|||
|
```java title=""
|
|||
|
/* 二元樹節點類別 */
|
|||
|
class TreeNode {
|
|||
|
int val; // 節點值
|
|||
|
TreeNode left; // 左子節點引用
|
|||
|
TreeNode right; // 右子節點引用
|
|||
|
TreeNode(int x) { val = x; }
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
=== "C#"
|
|||
|
|
|||
|
```csharp title=""
|
|||
|
/* 二元樹節點類別 */
|
|||
|
class TreeNode(int? x) {
|
|||
|
public int? val = x; // 節點值
|
|||
|
public TreeNode? left; // 左子節點引用
|
|||
|
public TreeNode? right; // 右子節點引用
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
=== "Go"
|
|||
|
|
|||
|
```go title=""
|
|||
|
/* 二元樹節點結構體 */
|
|||
|
type TreeNode struct {
|
|||
|
Val int
|
|||
|
Left *TreeNode
|
|||
|
Right *TreeNode
|
|||
|
}
|
|||
|
/* 建構子 */
|
|||
|
func NewTreeNode(v int) *TreeNode {
|
|||
|
return &TreeNode{
|
|||
|
Left: nil, // 左子節點指標
|
|||
|
Right: nil, // 右子節點指標
|
|||
|
Val: v, // 節點值
|
|||
|
}
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
=== "Swift"
|
|||
|
|
|||
|
```swift title=""
|
|||
|
/* 二元樹節點類別 */
|
|||
|
class TreeNode {
|
|||
|
var val: Int // 節點值
|
|||
|
var left: TreeNode? // 左子節點引用
|
|||
|
var right: TreeNode? // 右子節點引用
|
|||
|
|
|||
|
init(x: Int) {
|
|||
|
val = x
|
|||
|
}
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
=== "JS"
|
|||
|
|
|||
|
```javascript title=""
|
|||
|
/* 二元樹節點類別 */
|
|||
|
class TreeNode {
|
|||
|
val; // 節點值
|
|||
|
left; // 左子節點指標
|
|||
|
right; // 右子節點指標
|
|||
|
constructor(val, left, right) {
|
|||
|
this.val = val === undefined ? 0 : val;
|
|||
|
this.left = left === undefined ? null : left;
|
|||
|
this.right = right === undefined ? null : right;
|
|||
|
}
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
=== "TS"
|
|||
|
|
|||
|
```typescript title=""
|
|||
|
/* 二元樹節點類別 */
|
|||
|
class TreeNode {
|
|||
|
val: number;
|
|||
|
left: TreeNode | null;
|
|||
|
right: TreeNode | null;
|
|||
|
|
|||
|
constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
|
|||
|
this.val = val === undefined ? 0 : val; // 節點值
|
|||
|
this.left = left === undefined ? null : left; // 左子節點引用
|
|||
|
this.right = right === undefined ? null : right; // 右子節點引用
|
|||
|
}
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
=== "Dart"
|
|||
|
|
|||
|
```dart title=""
|
|||
|
/* 二元樹節點類別 */
|
|||
|
class TreeNode {
|
|||
|
int val; // 節點值
|
|||
|
TreeNode? left; // 左子節點引用
|
|||
|
TreeNode? right; // 右子節點引用
|
|||
|
TreeNode(this.val, [this.left, this.right]);
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
=== "Rust"
|
|||
|
|
|||
|
```rust title=""
|
|||
|
use std::rc::Rc;
|
|||
|
use std::cell::RefCell;
|
|||
|
|
|||
|
/* 二元樹節點結構體 */
|
|||
|
struct TreeNode {
|
|||
|
val: i32, // 節點值
|
|||
|
left: Option<Rc<RefCell<TreeNode>>>, // 左子節點引用
|
|||
|
right: Option<Rc<RefCell<TreeNode>>>, // 右子節點引用
|
|||
|
}
|
|||
|
|
|||
|
impl TreeNode {
|
|||
|
/* 建構子 */
|
|||
|
fn new(val: i32) -> Rc<RefCell<Self>> {
|
|||
|
Rc::new(RefCell::new(Self {
|
|||
|
val,
|
|||
|
left: None,
|
|||
|
right: None
|
|||
|
}))
|
|||
|
}
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
=== "C"
|
|||
|
|
|||
|
```c title=""
|
|||
|
/* 二元樹節點結構體 */
|
|||
|
typedef struct TreeNode {
|
|||
|
int val; // 節點值
|
|||
|
int height; // 節點高度
|
|||
|
struct TreeNode *left; // 左子節點指標
|
|||
|
struct TreeNode *right; // 右子節點指標
|
|||
|
} TreeNode;
|
|||
|
|
|||
|
/* 建構子 */
|
|||
|
TreeNode *newTreeNode(int val) {
|
|||
|
TreeNode *node;
|
|||
|
|
|||
|
node = (TreeNode *)malloc(sizeof(TreeNode));
|
|||
|
node->val = val;
|
|||
|
node->height = 0;
|
|||
|
node->left = NULL;
|
|||
|
node->right = NULL;
|
|||
|
return node;
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
=== "Kotlin"
|
|||
|
|
|||
|
```kotlin title=""
|
|||
|
/* 二元樹節點類別 */
|
|||
|
class TreeNode(val _val: Int) { // 節點值
|
|||
|
val left: TreeNode? = null // 左子節點引用
|
|||
|
val right: TreeNode? = null // 右子節點引用
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
=== "Ruby"
|
|||
|
|
|||
|
```ruby title=""
|
|||
|
|
|||
|
```
|
|||
|
|
|||
|
=== "Zig"
|
|||
|
|
|||
|
```zig title=""
|
|||
|
|
|||
|
```
|
|||
|
|
|||
|
每個節點都有兩個引用(指標),分別指向<u>左子節點(left-child node)</u>和<u>右子節點(right-child node)</u>,該節點被稱為這兩個子節點的<u>父節點(parent node)</u>。當給定一個二元樹的節點時,我們將該節點的左子節點及其以下節點形成的樹稱為該節點的<u>左子樹(left subtree)</u>,同理可得<u>右子樹(right subtree)</u>。
|
|||
|
|
|||
|
**在二元樹中,除葉節點外,其他所有節點都包含子節點和非空子樹**。如下圖所示,如果將“節點 2”視為父節點,則其左子節點和右子節點分別是“節點 4”和“節點 5”,左子樹是“節點 4 及其以下節點形成的樹”,右子樹是“節點 5 及其以下節點形成的樹”。
|
|||
|
|
|||
|
![父節點、子節點、子樹](binary_tree.assets/binary_tree_definition.png)
|
|||
|
|
|||
|
## 二元樹常見術語
|
|||
|
|
|||
|
二元樹的常用術語如下圖所示。
|
|||
|
|
|||
|
- <u>根節點(root node)</u>:位於二元樹頂層的節點,沒有父節點。
|
|||
|
- <u>葉節點(leaf node)</u>:沒有子節點的節點,其兩個指標均指向 `None` 。
|
|||
|
- <u>邊(edge)</u>:連線兩個節點的線段,即節點引用(指標)。
|
|||
|
- 節點所在的<u>層(level)</u>:從頂至底遞增,根節點所在層為 1 。
|
|||
|
- 節點的<u>度(degree)</u>:節點的子節點的數量。在二元樹中,度的取值範圍是 0、1、2 。
|
|||
|
- 二元樹的<u>高度(height)</u>:從根節點到最遠葉節點所經過的邊的數量。
|
|||
|
- 節點的<u>深度(depth)</u>:從根節點到該節點所經過的邊的數量。
|
|||
|
- 節點的<u>高度(height)</u>:從距離該節點最遠的葉節點到該節點所經過的邊的數量。
|
|||
|
|
|||
|
![二元樹的常用術語](binary_tree.assets/binary_tree_terminology.png)
|
|||
|
|
|||
|
!!! tip
|
|||
|
|
|||
|
請注意,我們通常將“高度”和“深度”定義為“經過的邊的數量”,但有些題目或教材可能會將其定義為“經過的節點的數量”。在這種情況下,高度和深度都需要加 1 。
|
|||
|
|
|||
|
## 二元樹基本操作
|
|||
|
|
|||
|
### 初始化二元樹
|
|||
|
|
|||
|
與鏈結串列類似,首先初始化節點,然後構建引用(指標)。
|
|||
|
|
|||
|
=== "Python"
|
|||
|
|
|||
|
```python title="binary_tree.py"
|
|||
|
# 初始化二元樹
|
|||
|
# 初始化節點
|
|||
|
n1 = TreeNode(val=1)
|
|||
|
n2 = TreeNode(val=2)
|
|||
|
n3 = TreeNode(val=3)
|
|||
|
n4 = TreeNode(val=4)
|
|||
|
n5 = TreeNode(val=5)
|
|||
|
# 構建節點之間的引用(指標)
|
|||
|
n1.left = n2
|
|||
|
n1.right = n3
|
|||
|
n2.left = n4
|
|||
|
n2.right = n5
|
|||
|
```
|
|||
|
|
|||
|
=== "C++"
|
|||
|
|
|||
|
```cpp title="binary_tree.cpp"
|
|||
|
/* 初始化二元樹 */
|
|||
|
// 初始化節點
|
|||
|
TreeNode* n1 = new TreeNode(1);
|
|||
|
TreeNode* n2 = new TreeNode(2);
|
|||
|
TreeNode* n3 = new TreeNode(3);
|
|||
|
TreeNode* n4 = new TreeNode(4);
|
|||
|
TreeNode* n5 = new TreeNode(5);
|
|||
|
// 構建節點之間的引用(指標)
|
|||
|
n1->left = n2;
|
|||
|
n1->right = n3;
|
|||
|
n2->left = n4;
|
|||
|
n2->right = n5;
|
|||
|
```
|
|||
|
|
|||
|
=== "Java"
|
|||
|
|
|||
|
```java title="binary_tree.java"
|
|||
|
// 初始化節點
|
|||
|
TreeNode n1 = new TreeNode(1);
|
|||
|
TreeNode n2 = new TreeNode(2);
|
|||
|
TreeNode n3 = new TreeNode(3);
|
|||
|
TreeNode n4 = new TreeNode(4);
|
|||
|
TreeNode n5 = new TreeNode(5);
|
|||
|
// 構建節點之間的引用(指標)
|
|||
|
n1.left = n2;
|
|||
|
n1.right = n3;
|
|||
|
n2.left = n4;
|
|||
|
n2.right = n5;
|
|||
|
```
|
|||
|
|
|||
|
=== "C#"
|
|||
|
|
|||
|
```csharp title="binary_tree.cs"
|
|||
|
/* 初始化二元樹 */
|
|||
|
// 初始化節點
|
|||
|
TreeNode n1 = new(1);
|
|||
|
TreeNode n2 = new(2);
|
|||
|
TreeNode n3 = new(3);
|
|||
|
TreeNode n4 = new(4);
|
|||
|
TreeNode n5 = new(5);
|
|||
|
// 構建節點之間的引用(指標)
|
|||
|
n1.left = n2;
|
|||
|
n1.right = n3;
|
|||
|
n2.left = n4;
|
|||
|
n2.right = n5;
|
|||
|
```
|
|||
|
|
|||
|
=== "Go"
|
|||
|
|
|||
|
```go title="binary_tree.go"
|
|||
|
/* 初始化二元樹 */
|
|||
|
// 初始化節點
|
|||
|
n1 := NewTreeNode(1)
|
|||
|
n2 := NewTreeNode(2)
|
|||
|
n3 := NewTreeNode(3)
|
|||
|
n4 := NewTreeNode(4)
|
|||
|
n5 := NewTreeNode(5)
|
|||
|
// 構建節點之間的引用(指標)
|
|||
|
n1.Left = n2
|
|||
|
n1.Right = n3
|
|||
|
n2.Left = n4
|
|||
|
n2.Right = n5
|
|||
|
```
|
|||
|
|
|||
|
=== "Swift"
|
|||
|
|
|||
|
```swift title="binary_tree.swift"
|
|||
|
// 初始化節點
|
|||
|
let n1 = TreeNode(x: 1)
|
|||
|
let n2 = TreeNode(x: 2)
|
|||
|
let n3 = TreeNode(x: 3)
|
|||
|
let n4 = TreeNode(x: 4)
|
|||
|
let n5 = TreeNode(x: 5)
|
|||
|
// 構建節點之間的引用(指標)
|
|||
|
n1.left = n2
|
|||
|
n1.right = n3
|
|||
|
n2.left = n4
|
|||
|
n2.right = n5
|
|||
|
```
|
|||
|
|
|||
|
=== "JS"
|
|||
|
|
|||
|
```javascript title="binary_tree.js"
|
|||
|
/* 初始化二元樹 */
|
|||
|
// 初始化節點
|
|||
|
let n1 = new TreeNode(1),
|
|||
|
n2 = new TreeNode(2),
|
|||
|
n3 = new TreeNode(3),
|
|||
|
n4 = new TreeNode(4),
|
|||
|
n5 = new TreeNode(5);
|
|||
|
// 構建節點之間的引用(指標)
|
|||
|
n1.left = n2;
|
|||
|
n1.right = n3;
|
|||
|
n2.left = n4;
|
|||
|
n2.right = n5;
|
|||
|
```
|
|||
|
|
|||
|
=== "TS"
|
|||
|
|
|||
|
```typescript title="binary_tree.ts"
|
|||
|
/* 初始化二元樹 */
|
|||
|
// 初始化節點
|
|||
|
let n1 = new TreeNode(1),
|
|||
|
n2 = new TreeNode(2),
|
|||
|
n3 = new TreeNode(3),
|
|||
|
n4 = new TreeNode(4),
|
|||
|
n5 = new TreeNode(5);
|
|||
|
// 構建節點之間的引用(指標)
|
|||
|
n1.left = n2;
|
|||
|
n1.right = n3;
|
|||
|
n2.left = n4;
|
|||
|
n2.right = n5;
|
|||
|
```
|
|||
|
|
|||
|
=== "Dart"
|
|||
|
|
|||
|
```dart title="binary_tree.dart"
|
|||
|
/* 初始化二元樹 */
|
|||
|
// 初始化節點
|
|||
|
TreeNode n1 = new TreeNode(1);
|
|||
|
TreeNode n2 = new TreeNode(2);
|
|||
|
TreeNode n3 = new TreeNode(3);
|
|||
|
TreeNode n4 = new TreeNode(4);
|
|||
|
TreeNode n5 = new TreeNode(5);
|
|||
|
// 構建節點之間的引用(指標)
|
|||
|
n1.left = n2;
|
|||
|
n1.right = n3;
|
|||
|
n2.left = n4;
|
|||
|
n2.right = n5;
|
|||
|
```
|
|||
|
|
|||
|
=== "Rust"
|
|||
|
|
|||
|
```rust title="binary_tree.rs"
|
|||
|
// 初始化節點
|
|||
|
let n1 = TreeNode::new(1);
|
|||
|
let n2 = TreeNode::new(2);
|
|||
|
let n3 = TreeNode::new(3);
|
|||
|
let n4 = TreeNode::new(4);
|
|||
|
let n5 = TreeNode::new(5);
|
|||
|
// 構建節點之間的引用(指標)
|
|||
|
n1.borrow_mut().left = Some(n2.clone());
|
|||
|
n1.borrow_mut().right = Some(n3);
|
|||
|
n2.borrow_mut().left = Some(n4);
|
|||
|
n2.borrow_mut().right = Some(n5);
|
|||
|
```
|
|||
|
|
|||
|
=== "C"
|
|||
|
|
|||
|
```c title="binary_tree.c"
|
|||
|
/* 初始化二元樹 */
|
|||
|
// 初始化節點
|
|||
|
TreeNode *n1 = newTreeNode(1);
|
|||
|
TreeNode *n2 = newTreeNode(2);
|
|||
|
TreeNode *n3 = newTreeNode(3);
|
|||
|
TreeNode *n4 = newTreeNode(4);
|
|||
|
TreeNode *n5 = newTreeNode(5);
|
|||
|
// 構建節點之間的引用(指標)
|
|||
|
n1->left = n2;
|
|||
|
n1->right = n3;
|
|||
|
n2->left = n4;
|
|||
|
n2->right = n5;
|
|||
|
```
|
|||
|
|
|||
|
=== "Kotlin"
|
|||
|
|
|||
|
```kotlin title="binary_tree.kt"
|
|||
|
// 初始化節點
|
|||
|
val n1 = TreeNode(1)
|
|||
|
val n2 = TreeNode(2)
|
|||
|
val n3 = TreeNode(3)
|
|||
|
val n4 = TreeNode(4)
|
|||
|
val n5 = TreeNode(5)
|
|||
|
// 構建節點之間的引用(指標)
|
|||
|
n1.left = n2
|
|||
|
n1.right = n3
|
|||
|
n2.left = n4
|
|||
|
n2.right = n5
|
|||
|
```
|
|||
|
|
|||
|
=== "Ruby"
|
|||
|
|
|||
|
```ruby title="binary_tree.rb"
|
|||
|
|
|||
|
```
|
|||
|
|
|||
|
=== "Zig"
|
|||
|
|
|||
|
```zig title="binary_tree.zig"
|
|||
|
|
|||
|
```
|
|||
|
|
|||
|
??? pythontutor "視覺化執行"
|
|||
|
|
|||
|
https://pythontutor.com/render.html#code=class%20TreeNode%3A%0A%20%20%20%20%22%22%22%E4%BA%8C%E5%8F%89%E6%A0%91%E8%8A%82%E7%82%B9%E7%B1%BB%22%22%22%0A%20%20%20%20def%20__init__%28self,%20val%3A%20int%29%3A%0A%20%20%20%20%20%20%20%20self.val%3A%20int%20%3D%20val%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E8%8A%82%E7%82%B9%E5%80%BC%0A%20%20%20%20%20%20%20%20self.left%3A%20TreeNode%20%7C%20None%20%3D%20None%20%20%23%20%E5%B7%A6%E5%AD%90%E8%8A%82%E7%82%B9%E5%BC%95%E7%94%A8%0A%20%20%20%20%20%20%20%20self.right%3A%20TreeNode%20%7C%20None%20%3D%20None%20%23%20%E5%8F%B3%E5%AD%90%E8%8A%82%E7%82%B9%E5%BC%95%E7%94%A8%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%E4%BA%8C%E5%8F%89%E6%A0%91%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%E8%8A%82%E7%82%B9%0A%20%20%20%20n1%20%3D%20TreeNode%28val%3D1%29%0A%20%20%20%20n2%20%3D%20TreeNode%28val%3D2%29%0A%20%20%20%20n3%20%3D%20TreeNode%28val%3D3%29%0A%20%20%20%20n4%20%3D%20TreeNode%28val%3D4%29%0A%20%20%20%20n5%20%3D%20TreeNode%28val%3D5%29%0A%20%20%20%20%23%20%E6%9E%84%E5%BB%BA%E8%8A%82%E7%82%B9%E4%B9%8B%E9%97%B4%E7%9A%84%E5%BC%95%E7%94%A8%EF%BC%88%E6%8C%87%E9%92%88%EF%BC%89%0A%20%20%20%20n1.left%20%3D%20n2%0A%20%20%20%20n1.right%20%3D%20n3%0A%20%20%20%20n2.left%20%3D%20n4%0A%20%20%20%20n2.right%20%3D%20n5&cumulative=false&curInstr=3&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false
|
|||
|
|
|||
|
### 插入與刪除節點
|
|||
|
|
|||
|
與鏈結串列類似,在二元樹中插入與刪除節點可以透過修改指標來實現。下圖給出了一個示例。
|
|||
|
|
|||
|
![在二元樹中插入與刪除節點](binary_tree.assets/binary_tree_add_remove.png)
|
|||
|
|
|||
|
=== "Python"
|
|||
|
|
|||
|
```python title="binary_tree.py"
|
|||
|
# 插入與刪除節點
|
|||
|
p = TreeNode(0)
|
|||
|
# 在 n1 -> n2 中間插入節點 P
|
|||
|
n1.left = p
|
|||
|
p.left = n2
|
|||
|
# 刪除節點 P
|
|||
|
n1.left = n2
|
|||
|
```
|
|||
|
|
|||
|
=== "C++"
|
|||
|
|
|||
|
```cpp title="binary_tree.cpp"
|
|||
|
/* 插入與刪除節點 */
|
|||
|
TreeNode* P = new TreeNode(0);
|
|||
|
// 在 n1 -> n2 中間插入節點 P
|
|||
|
n1->left = P;
|
|||
|
P->left = n2;
|
|||
|
// 刪除節點 P
|
|||
|
n1->left = n2;
|
|||
|
```
|
|||
|
|
|||
|
=== "Java"
|
|||
|
|
|||
|
```java title="binary_tree.java"
|
|||
|
TreeNode P = new TreeNode(0);
|
|||
|
// 在 n1 -> n2 中間插入節點 P
|
|||
|
n1.left = P;
|
|||
|
P.left = n2;
|
|||
|
// 刪除節點 P
|
|||
|
n1.left = n2;
|
|||
|
```
|
|||
|
|
|||
|
=== "C#"
|
|||
|
|
|||
|
```csharp title="binary_tree.cs"
|
|||
|
/* 插入與刪除節點 */
|
|||
|
TreeNode P = new(0);
|
|||
|
// 在 n1 -> n2 中間插入節點 P
|
|||
|
n1.left = P;
|
|||
|
P.left = n2;
|
|||
|
// 刪除節點 P
|
|||
|
n1.left = n2;
|
|||
|
```
|
|||
|
|
|||
|
=== "Go"
|
|||
|
|
|||
|
```go title="binary_tree.go"
|
|||
|
/* 插入與刪除節點 */
|
|||
|
// 在 n1 -> n2 中間插入節點 P
|
|||
|
p := NewTreeNode(0)
|
|||
|
n1.Left = p
|
|||
|
p.Left = n2
|
|||
|
// 刪除節點 P
|
|||
|
n1.Left = n2
|
|||
|
```
|
|||
|
|
|||
|
=== "Swift"
|
|||
|
|
|||
|
```swift title="binary_tree.swift"
|
|||
|
let P = TreeNode(x: 0)
|
|||
|
// 在 n1 -> n2 中間插入節點 P
|
|||
|
n1.left = P
|
|||
|
P.left = n2
|
|||
|
// 刪除節點 P
|
|||
|
n1.left = n2
|
|||
|
```
|
|||
|
|
|||
|
=== "JS"
|
|||
|
|
|||
|
```javascript title="binary_tree.js"
|
|||
|
/* 插入與刪除節點 */
|
|||
|
let P = new TreeNode(0);
|
|||
|
// 在 n1 -> n2 中間插入節點 P
|
|||
|
n1.left = P;
|
|||
|
P.left = n2;
|
|||
|
// 刪除節點 P
|
|||
|
n1.left = n2;
|
|||
|
```
|
|||
|
|
|||
|
=== "TS"
|
|||
|
|
|||
|
```typescript title="binary_tree.ts"
|
|||
|
/* 插入與刪除節點 */
|
|||
|
const P = new TreeNode(0);
|
|||
|
// 在 n1 -> n2 中間插入節點 P
|
|||
|
n1.left = P;
|
|||
|
P.left = n2;
|
|||
|
// 刪除節點 P
|
|||
|
n1.left = n2;
|
|||
|
```
|
|||
|
|
|||
|
=== "Dart"
|
|||
|
|
|||
|
```dart title="binary_tree.dart"
|
|||
|
/* 插入與刪除節點 */
|
|||
|
TreeNode P = new TreeNode(0);
|
|||
|
// 在 n1 -> n2 中間插入節點 P
|
|||
|
n1.left = P;
|
|||
|
P.left = n2;
|
|||
|
// 刪除節點 P
|
|||
|
n1.left = n2;
|
|||
|
```
|
|||
|
|
|||
|
=== "Rust"
|
|||
|
|
|||
|
```rust title="binary_tree.rs"
|
|||
|
let p = TreeNode::new(0);
|
|||
|
// 在 n1 -> n2 中間插入節點 P
|
|||
|
n1.borrow_mut().left = Some(p.clone());
|
|||
|
p.borrow_mut().left = Some(n2.clone());
|
|||
|
// 刪除節點 p
|
|||
|
n1.borrow_mut().left = Some(n2);
|
|||
|
```
|
|||
|
|
|||
|
=== "C"
|
|||
|
|
|||
|
```c title="binary_tree.c"
|
|||
|
/* 插入與刪除節點 */
|
|||
|
TreeNode *P = newTreeNode(0);
|
|||
|
// 在 n1 -> n2 中間插入節點 P
|
|||
|
n1->left = P;
|
|||
|
P->left = n2;
|
|||
|
// 刪除節點 P
|
|||
|
n1->left = n2;
|
|||
|
```
|
|||
|
|
|||
|
=== "Kotlin"
|
|||
|
|
|||
|
```kotlin title="binary_tree.kt"
|
|||
|
val P = TreeNode(0)
|
|||
|
// 在 n1 -> n2 中間插入節點 P
|
|||
|
n1.left = P
|
|||
|
P.left = n2
|
|||
|
// 刪除節點 P
|
|||
|
n1.left = n2
|
|||
|
```
|
|||
|
|
|||
|
=== "Ruby"
|
|||
|
|
|||
|
```ruby title="binary_tree.rb"
|
|||
|
|
|||
|
```
|
|||
|
|
|||
|
=== "Zig"
|
|||
|
|
|||
|
```zig title="binary_tree.zig"
|
|||
|
|
|||
|
```
|
|||
|
|
|||
|
??? pythontutor "視覺化執行"
|
|||
|
|
|||
|
https://pythontutor.com/render.html#code=class%20TreeNode%3A%0A%20%20%20%20%22%22%22%E4%BA%8C%E5%8F%89%E6%A0%91%E8%8A%82%E7%82%B9%E7%B1%BB%22%22%22%0A%20%20%20%20def%20__init__%28self,%20val%3A%20int%29%3A%0A%20%20%20%20%20%20%20%20self.val%3A%20int%20%3D%20val%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E8%8A%82%E7%82%B9%E5%80%BC%0A%20%20%20%20%20%20%20%20self.left%3A%20TreeNode%20%7C%20None%20%3D%20None%20%20%23%20%E5%B7%A6%E5%AD%90%E8%8A%82%E7%82%B9%E5%BC%95%E7%94%A8%0A%20%20%20%20%20%20%20%20self.right%3A%20TreeNode%20%7C%20None%20%3D%20None%20%23%20%E5%8F%B3%E5%AD%90%E8%8A%82%E7%82%B9%E5%BC%95%E7%94%A8%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%E4%BA%8C%E5%8F%89%E6%A0%91%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%E8%8A%82%E7%82%B9%0A%20%20%20%20n1%20%3D%20TreeNode%28val%3D1%29%0A%20%20%20%20n2%20%3D%20TreeNode%28val%3D2%29%0A%20%20%20%20n3%20%3D%20TreeNode%28val%3D3%29%0A%20%20%20%20n4%20%3D%20TreeNode%28val%3D4%29%0A%20%20%20%20n5%20%3D%20TreeNode%28val%3D5%29%0A%20%20%20%20%23%20%E6%9E%84%E5%BB%BA%E8%8A%82%E7%82%B9%E4%B9%8B%E9%97%B4%E7%9A%84%E5%BC%95%E7%94%A8%EF%BC%88%E6%8C%87%E9%92%88%EF%BC%89%0A%20%20%20%20n1.left%20%3D%20n2%0A%20%20%20%20n1.right%20%3D%20n3%0A%20%20%20%20n2.left%20%3D%20n4%0A%20%20%20%20n2.right%20%3D%20n5%0A%0A%20%20%20%20%23%20%E6%8F%92%E5%85%A5%E4%B8%8E%E5%88%A0%E9%99%A4%E8%8A%82%E7%82%B9%0A%20%20%20%20p%20%3D%20TreeNode%280%29%0A%20%20%20%20%23%20%E5%9C%A8%20n1%20-%3E%20n2%20%E4%B8%AD%E9%97%B4%E6%8F%92%E5%85%A5%E8%8A%82%E7%82%B9%20P%0A%20%20%20%20n1.left%20%3D%20p%0A%20%20%20%20p.left%20%3D%20n2%0A%20%20%20%20%23%20%E5%88%A0%E9%99%A4%E8%8A%82%E7%82%B9%20P%0A%20%20%20%20n1.left%20%3D%20n2&cumulative=false&curInstr=37&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false
|
|||
|
|
|||
|
!!! note
|
|||
|
|
|||
|
需要注意的是,插入節點可能會改變二元樹的原有邏輯結構,而刪除節點通常意味著刪除該節點及其所有子樹。因此,在二元樹中,插入與刪除通常是由一套操作配合完成的,以實現有實際意義的操作。
|
|||
|
|
|||
|
## 常見二元樹型別
|
|||
|
|
|||
|
### 完美二元樹
|
|||
|
|
|||
|
如下圖所示,<u>完美二元樹(perfect binary tree)</u>所有層的節點都被完全填滿。在完美二元樹中,葉節點的度為 $0$ ,其餘所有節點的度都為 $2$ ;若樹的高度為 $h$ ,則節點總數為 $2^{h+1} - 1$ ,呈現標準的指數級關係,反映了自然界中常見的細胞分裂現象。
|
|||
|
|
|||
|
!!! tip
|
|||
|
|
|||
|
請注意,在中文社群中,完美二元樹常被稱為<u>滿二元樹</u>。
|
|||
|
|
|||
|
![完美二元樹](binary_tree.assets/perfect_binary_tree.png)
|
|||
|
|
|||
|
### 完全二元樹
|
|||
|
|
|||
|
如下圖所示,<u>完全二元樹(complete binary tree)</u>只有最底層的節點未被填滿,且最底層節點儘量靠左填充。
|
|||
|
|
|||
|
![完全二元樹](binary_tree.assets/complete_binary_tree.png)
|
|||
|
|
|||
|
### 完滿二元樹
|
|||
|
|
|||
|
如下圖所示,<u>完滿二元樹(full binary tree)</u>除了葉節點之外,其餘所有節點都有兩個子節點。
|
|||
|
|
|||
|
![完滿二元樹](binary_tree.assets/full_binary_tree.png)
|
|||
|
|
|||
|
### 平衡二元樹
|
|||
|
|
|||
|
如下圖所示,<u>平衡二元樹(balanced binary tree)</u>中任意節點的左子樹和右子樹的高度之差的絕對值不超過 1 。
|
|||
|
|
|||
|
![平衡二元樹](binary_tree.assets/balanced_binary_tree.png)
|
|||
|
|
|||
|
## 二元樹的退化
|
|||
|
|
|||
|
下圖展示了二元樹的理想結構與退化結構。當二元樹的每層節點都被填滿時,達到“完美二元樹”;而當所有節點都偏向一側時,二元樹退化為“鏈結串列”。
|
|||
|
|
|||
|
- 完美二元樹是理想情況,可以充分發揮二元樹“分治”的優勢。
|
|||
|
- 鏈結串列則是另一個極端,各項操作都變為線性操作,時間複雜度退化至 $O(n)$ 。
|
|||
|
|
|||
|
![二元樹的最佳結構與最差結構](binary_tree.assets/binary_tree_best_worst_cases.png)
|
|||
|
|
|||
|
如下表所示,在最佳結構和最差結構下,二元樹的葉節點數量、節點總數、高度等達到極大值或極小值。
|
|||
|
|
|||
|
<p align="center"> 表 <id> 二元樹的最佳結構與最差結構 </p>
|
|||
|
|
|||
|
| | 完美二元樹 | 鏈結串列 |
|
|||
|
| --------------------------- | ------------------ | ------- |
|
|||
|
| 第 $i$ 層的節點數量 | $2^{i-1}$ | $1$ |
|
|||
|
| 高度為 $h$ 的樹的葉節點數量 | $2^h$ | $1$ |
|
|||
|
| 高度為 $h$ 的樹的節點總數 | $2^{h+1} - 1$ | $h + 1$ |
|
|||
|
| 節點總數為 $n$ 的樹的高度 | $\log_2 (n+1) - 1$ | $n - 1$ |
|