mirror of
https://github.com/krahets/hello-algo.git
synced 2024-12-26 03:26:29 +08:00
137 lines
3.7 KiB
Kotlin
137 lines
3.7 KiB
Kotlin
|
/**
|
||
|
* File: knapsack.kt
|
||
|
* Created Time: 2024-01-25
|
||
|
* Author: curtishd (1023632660@qq.com)
|
||
|
*/
|
||
|
|
||
|
package chapter_dynamic_programming
|
||
|
|
||
|
import java.util.*
|
||
|
import kotlin.math.max
|
||
|
|
||
|
/* 0-1 背包:暴力搜尋 */
|
||
|
fun knapsackDFS(
|
||
|
wgt: IntArray,
|
||
|
value: IntArray,
|
||
|
i: Int,
|
||
|
c: Int
|
||
|
): Int {
|
||
|
// 若已選完所有物品或背包無剩餘容量,則返回價值 0
|
||
|
if (i == 0 || c == 0) {
|
||
|
return 0
|
||
|
}
|
||
|
// 若超過背包容量,則只能選擇不放入背包
|
||
|
if (wgt[i - 1] > c) {
|
||
|
return knapsackDFS(wgt, value, i - 1, c)
|
||
|
}
|
||
|
// 計算不放入和放入物品 i 的最大價值
|
||
|
val no = knapsackDFS(wgt, value, i - 1, c)
|
||
|
val yes = knapsackDFS(wgt, value, i - 1, c - wgt[i - 1]) + value[i - 1]
|
||
|
// 返回兩種方案中價值更大的那一個
|
||
|
return max(no.toDouble(), yes.toDouble()).toInt()
|
||
|
}
|
||
|
|
||
|
/* 0-1 背包:記憶化搜尋 */
|
||
|
fun knapsackDFSMem(
|
||
|
wgt: IntArray,
|
||
|
value: IntArray,
|
||
|
mem: Array<IntArray>,
|
||
|
i: Int,
|
||
|
c: Int
|
||
|
): Int {
|
||
|
// 若已選完所有物品或背包無剩餘容量,則返回價值 0
|
||
|
if (i == 0 || c == 0) {
|
||
|
return 0
|
||
|
}
|
||
|
// 若已有記錄,則直接返回
|
||
|
if (mem[i][c] != -1) {
|
||
|
return mem[i][c]
|
||
|
}
|
||
|
// 若超過背包容量,則只能選擇不放入背包
|
||
|
if (wgt[i - 1] > c) {
|
||
|
return knapsackDFSMem(wgt, value, mem, i - 1, c)
|
||
|
}
|
||
|
// 計算不放入和放入物品 i 的最大價值
|
||
|
val no = knapsackDFSMem(wgt, value, mem, i - 1, c)
|
||
|
val yes = knapsackDFSMem(wgt, value, mem, i - 1, c - wgt[i - 1]) + value[i - 1]
|
||
|
// 記錄並返回兩種方案中價值更大的那一個
|
||
|
mem[i][c] = max(no.toDouble(), yes.toDouble()).toInt()
|
||
|
return mem[i][c]
|
||
|
}
|
||
|
|
||
|
/* 0-1 背包:動態規劃 */
|
||
|
fun knapsackDP(
|
||
|
wgt: IntArray,
|
||
|
value: IntArray,
|
||
|
cap: Int
|
||
|
): Int {
|
||
|
val n = wgt.size
|
||
|
// 初始化 dp 表
|
||
|
val dp = Array(n + 1) { IntArray(cap + 1) }
|
||
|
// 狀態轉移
|
||
|
for (i in 1..n) {
|
||
|
for (c in 1..cap) {
|
||
|
if (wgt[i - 1] > c) {
|
||
|
// 若超過背包容量,則不選物品 i
|
||
|
dp[i][c] = dp[i - 1][c]
|
||
|
} else {
|
||
|
// 不選和選物品 i 這兩種方案的較大值
|
||
|
dp[i][c] = max(dp[i - 1][c].toDouble(), (dp[i - 1][c - wgt[i - 1]] + value[i - 1]).toDouble())
|
||
|
.toInt()
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return dp[n][cap]
|
||
|
}
|
||
|
|
||
|
/* 0-1 背包:空間最佳化後的動態規劃 */
|
||
|
fun knapsackDPComp(
|
||
|
wgt: IntArray,
|
||
|
value: IntArray,
|
||
|
cap: Int
|
||
|
): Int {
|
||
|
val n = wgt.size
|
||
|
// 初始化 dp 表
|
||
|
val dp = IntArray(cap + 1)
|
||
|
// 狀態轉移
|
||
|
for (i in 1..n) {
|
||
|
// 倒序走訪
|
||
|
for (c in cap downTo 1) {
|
||
|
if (wgt[i - 1] <= c) {
|
||
|
// 不選和選物品 i 這兩種方案的較大值
|
||
|
dp[c] =
|
||
|
max(dp[c].toDouble(), (dp[c - wgt[i - 1]] + value[i - 1]).toDouble()).toInt()
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return dp[cap]
|
||
|
}
|
||
|
|
||
|
/* Driver Code */
|
||
|
fun main() {
|
||
|
val wgt = intArrayOf(10, 20, 30, 40, 50)
|
||
|
val value = intArrayOf(50, 120, 150, 210, 240)
|
||
|
val cap = 50
|
||
|
val n = wgt.size
|
||
|
|
||
|
// 暴力搜尋
|
||
|
var res = knapsackDFS(wgt, value, n, cap)
|
||
|
println("不超過背包容量的最大物品價值為 $res")
|
||
|
|
||
|
// 記憶化搜尋
|
||
|
val mem = Array(n + 1) { IntArray(cap + 1) }
|
||
|
for (row in mem) {
|
||
|
Arrays.fill(row, -1)
|
||
|
}
|
||
|
res = knapsackDFSMem(wgt, value, mem, n, cap)
|
||
|
println("不超過背包容量的最大物品價值為 $res")
|
||
|
|
||
|
// 動態規劃
|
||
|
res = knapsackDP(wgt, value, cap)
|
||
|
println("不超過背包容量的最大物品價值為 $res")
|
||
|
|
||
|
// 空間最佳化後的動態規劃
|
||
|
res = knapsackDPComp(wgt, value, cap)
|
||
|
println("不超過背包容量的最大物品價值為 $res")
|
||
|
}
|