hello-algo/en/codes/cpp/chapter_tree/binary_search_tree.cpp

171 lines
4.9 KiB
C++
Raw Permalink Normal View History

/**
* File: binary_search_tree.cpp
* Created Time: 2022-11-25
* Author: krahets (krahets@163.com)
*/
#include "../utils/common.hpp"
/* Binary search tree */
class BinarySearchTree {
private:
TreeNode *root;
public:
/* Constructor */
BinarySearchTree() {
// Initialize empty tree
root = nullptr;
}
/* Destructor */
~BinarySearchTree() {
freeMemoryTree(root);
}
/* Get binary tree root node */
TreeNode *getRoot() {
return root;
}
/* Search node */
TreeNode *search(int num) {
TreeNode *cur = root;
// Loop find, break after passing leaf nodes
while (cur != nullptr) {
// Target node is in cur's right subtree
if (cur->val < num)
cur = cur->right;
// Target node is in cur's left subtree
else if (cur->val > num)
cur = cur->left;
// Found target node, break loop
else
break;
}
// Return target node
return cur;
}
/* Insert node */
void insert(int num) {
// If tree is empty, initialize root node
if (root == nullptr) {
root = new TreeNode(num);
return;
}
TreeNode *cur = root, *pre = nullptr;
// Loop find, break after passing leaf nodes
while (cur != nullptr) {
// Found duplicate node, thus return
if (cur->val == num)
return;
pre = cur;
// Insertion position is in cur's right subtree
if (cur->val < num)
cur = cur->right;
// Insertion position is in cur's left subtree
else
cur = cur->left;
}
// Insert node
TreeNode *node = new TreeNode(num);
if (pre->val < num)
pre->right = node;
else
pre->left = node;
}
/* Remove node */
void remove(int num) {
// If tree is empty, return
if (root == nullptr)
return;
TreeNode *cur = root, *pre = nullptr;
// Loop find, break after passing leaf nodes
while (cur != nullptr) {
// Found node to be removed, break loop
if (cur->val == num)
break;
pre = cur;
// Node to be removed is in cur's right subtree
if (cur->val < num)
cur = cur->right;
// Node to be removed is in cur's left subtree
else
cur = cur->left;
}
// If no node to be removed, return
if (cur == nullptr)
return;
// Number of child nodes = 0 or 1
if (cur->left == nullptr || cur->right == nullptr) {
// When the number of child nodes = 0 / 1, child = nullptr / that child node
TreeNode *child = cur->left != nullptr ? cur->left : cur->right;
// Remove node cur
if (cur != root) {
if (pre->left == cur)
pre->left = child;
else
pre->right = child;
} else {
// If the removed node is the root, reassign the root
root = child;
}
// Free memory
delete cur;
}
// Number of child nodes = 2
else {
// Get the next node in in-order traversal of cur
TreeNode *tmp = cur->right;
while (tmp->left != nullptr) {
tmp = tmp->left;
}
int tmpVal = tmp->val;
// Recursively remove node tmp
remove(tmp->val);
// Replace cur with tmp
cur->val = tmpVal;
}
}
};
/* Driver Code */
int main() {
/* Initialize binary search tree */
BinarySearchTree *bst = new BinarySearchTree();
// Note that different insertion orders can result in various tree structures. This particular sequence creates a perfect binary tree
vector<int> nums = {8, 4, 12, 2, 6, 10, 14, 1, 3, 5, 7, 9, 11, 13, 15};
for (int num : nums) {
bst->insert(num);
}
cout << endl << "The initialized binary tree is\n" << endl;
printTree(bst->getRoot());
/* Search node */
TreeNode *node = bst->search(7);
cout << endl << "The found node object is " << node << ", node value =" << node->val << endl;
/* Insert node */
bst->insert(16);
cout << endl << "After inserting node 16, the binary tree is\n" << endl;
printTree(bst->getRoot());
/* Remove node */
bst->remove(1);
cout << endl << "After removing node 1, the binary tree is\n" << endl;
printTree(bst->getRoot());
bst->remove(2);
cout << endl << "After removing node 2, the binary tree is\n" << endl;
printTree(bst->getRoot());
bst->remove(4);
cout << endl << "After removing node 4, the binary tree is\n" << endl;
printTree(bst->getRoot());
// Free memory
delete bst;
return 0;
}