#!/usr/bin/env python # -*- coding: utf-8 -*- ''' Created on 2018年1月29日 @author: Irony."[讽刺] @site: https://pyqt5.com , https://github.com/892768447 @email: 892768447@qq.com @file: FacePoints @description: 人脸特征点 ''' from bz2 import BZ2Decompressor import cgitb import os import sys from PyQt5.QtCore import QTimer, QUrl, QFile, QIODevice from PyQt5.QtGui import QImage, QPixmap from PyQt5.QtNetwork import QNetworkAccessManager, QNetworkRequest from PyQt5.QtWidgets import QLabel, QMessageBox, QApplication import cv2 # @UnresolvedImport import dlib import numpy __Author__ = "By: Irony.\"[讽刺]\nQQ: 892768447\nEmail: 892768447@qq.com" __Copyright__ = "Copyright (c) 2018 Irony.\"[讽刺]" __Version__ = "Version 1.0" DOWNSCALE = 4 URL = 'http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2' class OpencvWidget(QLabel): def __init__(self, *args, **kwargs): super(OpencvWidget, self).__init__(*args, **kwargs) self.httpRequestAborted = False self.fps = 24 self.resize(800, 600) if not os.path.exists("Data/shape_predictor_68_face_landmarks.dat"): self.setText("正在下载数据文件。。。") self.outFile = QFile( "Data/shape_predictor_68_face_landmarks.dat.bz2") if not self.outFile.open(QIODevice.WriteOnly): QMessageBox.critical(self, '错误', '无法写入文件') return self.qnam = QNetworkAccessManager(self) self._reply = self.qnam.get(QNetworkRequest(QUrl(URL))) self._reply.finished.connect(self.httpFinished) self._reply.readyRead.connect(self.httpReadyRead) self._reply.downloadProgress.connect(self.updateDataReadProgress) else: self.startCapture() def httpFinished(self): self.outFile.close() if self.httpRequestAborted or self._reply.error(): self.outFile.remove() self._reply.deleteLater() del self._reply # 下载完成解压文件并加载摄像头 self.setText("正在解压数据。。。") try: bz = BZ2Decompressor() data = bz.decompress( open('Data/shape_predictor_68_face_landmarks.dat.bz2', 'rb').read()) open('Data/shape_predictor_68_face_landmarks.dat', 'wb').write(data) except Exception as e: self.setText('解压失败:' + str(e)) return self.setText('正在开启摄像头。。。') self.startCapture() def httpReadyRead(self): self.outFile.write(self._reply.readAll()) self.outFile.flush() def updateDataReadProgress(self, bytesRead, totalBytes): self.setText('已下载:{} %'.format(round(bytesRead / 64040097 * 100, 2))) def startCapture(self): self.setText("请稍候,正在初始化数据和摄像头。。。") try: # 检测相关 self.detector = dlib.get_frontal_face_detector() self.predictor = dlib.shape_predictor( "Data/shape_predictor_68_face_landmarks.dat") cascade_fn = "Data/lbpcascades/lbpcascade_frontalface.xml" self.cascade = cv2.CascadeClassifier(cascade_fn) if not self.cascade: return QMessageBox.critical(self, "错误", cascade_fn + " 无法找到") self.cap = cv2.VideoCapture(0) if not self.cap or not self.cap.isOpened(): return QMessageBox.critical(self, "错误", "打开摄像头失败") # 开启定时器定时捕获 self.timer = QTimer(self, timeout=self.onCapture) self.timer.start(1000 / self.fps) except Exception as e: QMessageBox.critical(self, "错误", str(e)) def closeEvent(self, event): if hasattr(self, "_reply") and self._reply: self.httpRequestAborted = True self._reply.abort() try: os.unlink("Data/shape_predictor_68_face_landmarks.dat.bz2") except: pass try: os.unlink("Data/shape_predictor_68_face_landmarks.dat") except: pass if hasattr(self, "timer"): self.timer.stop() self.timer.deleteLater() self.cap.release() del self.predictor, self.detector, self.cascade, self.cap super(OpencvWidget, self).closeEvent(event) self.deleteLater() def onCapture(self): _, frame = self.cap.read() minisize = ( int(frame.shape[1] / DOWNSCALE), int(frame.shape[0] / DOWNSCALE)) tmpframe = cv2.resize(frame, minisize) tmpframe = cv2.cvtColor(tmpframe, cv2.COLOR_BGR2GRAY) # 做灰度处理 tmpframe = cv2.equalizeHist(tmpframe) # minNeighbors表示每一个目标至少要被检测到5次 faces = self.cascade.detectMultiScale(tmpframe, minNeighbors=5) del tmpframe if len(faces) < 1: # 没有检测到脸 frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) img = QImage( frame.data, frame.shape[1], frame.shape[0], frame.shape[1] * 3, QImage.Format_RGB888) del frame return self.setPixmap(QPixmap.fromImage(img)) # 特征点检测描绘 for x, y, w, h in faces: x, y, w, h = x * DOWNSCALE, y * DOWNSCALE, w * DOWNSCALE, h * DOWNSCALE # 画脸矩形 cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0)) # 截取的人脸部分 tmpframe = frame[y:y + h, x:x + w] # 进行特征点描绘 rects = self.detector(tmpframe, 1) if len(rects) > 0: landmarks = numpy.matrix( [[p.x, p.y] for p in self.predictor(tmpframe, rects[0]).parts()]) for _, point in enumerate(landmarks): pos = (point[0, 0] + x, point[0, 1] + y) # 在原来画面上画点 cv2.circle(frame, pos, 3, color=(0, 255, 0)) # 转成Qt能显示的 frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) img = QImage( frame.data, frame.shape[1], frame.shape[0], frame.shape[1] * 3, QImage.Format_RGB888) del frame self.setPixmap(QPixmap.fromImage(img)) if __name__ == "__main__": cgitb.enable(1, None, 5, '') app = QApplication(sys.argv) w = OpencvWidget() w.show() sys.exit(app.exec_())