2018-12-28 20:50:07 +08:00
|
|
|
#!/usr/bin/env python
|
|
|
|
# -*- coding: utf-8 -*-
|
|
|
|
|
2021-07-13 14:52:26 +08:00
|
|
|
"""
|
2018-12-28 20:50:07 +08:00
|
|
|
Created on 2018年1月29日
|
2021-07-13 14:52:26 +08:00
|
|
|
@author: Irony
|
|
|
|
@site: https://pyqt.site , https://github.com/PyQt5
|
2018-12-28 20:50:07 +08:00
|
|
|
@email: 892768447@qq.com
|
2019-01-01 17:04:10 +08:00
|
|
|
@file: FacePoints
|
|
|
|
@description: 人脸特征点
|
2021-07-13 14:52:26 +08:00
|
|
|
"""
|
2019-01-01 17:04:10 +08:00
|
|
|
import cgitb
|
|
|
|
import os
|
2018-12-28 20:50:07 +08:00
|
|
|
import sys
|
2021-07-13 14:52:26 +08:00
|
|
|
from bz2 import BZ2Decompressor
|
2018-12-28 20:50:07 +08:00
|
|
|
|
|
|
|
import cv2 # @UnresolvedImport
|
|
|
|
import dlib
|
|
|
|
import numpy
|
|
|
|
|
2021-07-13 14:52:26 +08:00
|
|
|
try:
|
|
|
|
from PyQt5.QtCore import QTimer, QUrl, QFile, QIODevice
|
|
|
|
from PyQt5.QtGui import QImage, QPixmap
|
|
|
|
from PyQt5.QtNetwork import QNetworkAccessManager, QNetworkRequest
|
|
|
|
from PyQt5.QtWidgets import QLabel, QMessageBox, QApplication
|
|
|
|
except ImportError:
|
|
|
|
from PySide2.QtCore import QTimer, QUrl, QFile, QIODevice
|
|
|
|
from PySide2.QtGui import QImage, QPixmap
|
|
|
|
from PySide2.QtNetwork import QNetworkAccessManager, QNetworkRequest
|
|
|
|
from PySide2.QtWidgets import QLabel, QMessageBox, QApplication
|
2018-12-28 20:50:07 +08:00
|
|
|
|
|
|
|
DOWNSCALE = 4
|
2019-01-01 17:04:10 +08:00
|
|
|
URL = 'http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2'
|
2018-12-28 20:50:07 +08:00
|
|
|
|
|
|
|
|
|
|
|
class OpencvWidget(QLabel):
|
|
|
|
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
|
|
super(OpencvWidget, self).__init__(*args, **kwargs)
|
2019-01-01 17:04:10 +08:00
|
|
|
self.httpRequestAborted = False
|
2018-12-28 20:50:07 +08:00
|
|
|
self.fps = 24
|
|
|
|
self.resize(800, 600)
|
|
|
|
|
2019-01-01 17:04:10 +08:00
|
|
|
if not os.path.exists("Data/shape_predictor_68_face_landmarks.dat"):
|
|
|
|
self.setText("正在下载数据文件。。。")
|
|
|
|
self.outFile = QFile(
|
|
|
|
"Data/shape_predictor_68_face_landmarks.dat.bz2")
|
|
|
|
if not self.outFile.open(QIODevice.WriteOnly):
|
|
|
|
QMessageBox.critical(self, '错误', '无法写入文件')
|
|
|
|
return
|
|
|
|
self.qnam = QNetworkAccessManager(self)
|
|
|
|
self._reply = self.qnam.get(QNetworkRequest(QUrl(URL)))
|
|
|
|
self._reply.finished.connect(self.httpFinished)
|
|
|
|
self._reply.readyRead.connect(self.httpReadyRead)
|
|
|
|
self._reply.downloadProgress.connect(self.updateDataReadProgress)
|
|
|
|
else:
|
|
|
|
self.startCapture()
|
|
|
|
|
|
|
|
def httpFinished(self):
|
|
|
|
self.outFile.close()
|
|
|
|
if self.httpRequestAborted or self._reply.error():
|
|
|
|
self.outFile.remove()
|
|
|
|
self._reply.deleteLater()
|
|
|
|
del self._reply
|
|
|
|
# 下载完成解压文件并加载摄像头
|
|
|
|
self.setText("正在解压数据。。。")
|
|
|
|
try:
|
|
|
|
bz = BZ2Decompressor()
|
|
|
|
data = bz.decompress(
|
|
|
|
open('Data/shape_predictor_68_face_landmarks.dat.bz2', 'rb').read())
|
|
|
|
open('Data/shape_predictor_68_face_landmarks.dat', 'wb').write(data)
|
|
|
|
except Exception as e:
|
|
|
|
self.setText('解压失败:' + str(e))
|
|
|
|
return
|
|
|
|
self.setText('正在开启摄像头。。。')
|
|
|
|
self.startCapture()
|
|
|
|
|
|
|
|
def httpReadyRead(self):
|
|
|
|
self.outFile.write(self._reply.readAll())
|
|
|
|
self.outFile.flush()
|
|
|
|
|
|
|
|
def updateDataReadProgress(self, bytesRead, totalBytes):
|
|
|
|
self.setText('已下载:{} %'.format(round(bytesRead / 64040097 * 100, 2)))
|
|
|
|
|
|
|
|
def startCapture(self):
|
|
|
|
self.setText("请稍候,正在初始化数据和摄像头。。。")
|
2018-12-28 20:50:07 +08:00
|
|
|
try:
|
|
|
|
# 检测相关
|
|
|
|
self.detector = dlib.get_frontal_face_detector()
|
|
|
|
self.predictor = dlib.shape_predictor(
|
2019-01-01 17:04:10 +08:00
|
|
|
"Data/shape_predictor_68_face_landmarks.dat")
|
|
|
|
cascade_fn = "Data/lbpcascades/lbpcascade_frontalface.xml"
|
2018-12-28 20:50:07 +08:00
|
|
|
self.cascade = cv2.CascadeClassifier(cascade_fn)
|
|
|
|
if not self.cascade:
|
|
|
|
return QMessageBox.critical(self, "错误", cascade_fn + " 无法找到")
|
|
|
|
self.cap = cv2.VideoCapture(0)
|
|
|
|
if not self.cap or not self.cap.isOpened():
|
|
|
|
return QMessageBox.critical(self, "错误", "打开摄像头失败")
|
|
|
|
# 开启定时器定时捕获
|
|
|
|
self.timer = QTimer(self, timeout=self.onCapture)
|
|
|
|
self.timer.start(1000 / self.fps)
|
|
|
|
except Exception as e:
|
|
|
|
QMessageBox.critical(self, "错误", str(e))
|
|
|
|
|
|
|
|
def closeEvent(self, event):
|
2019-01-01 17:04:10 +08:00
|
|
|
if hasattr(self, "_reply") and self._reply:
|
|
|
|
self.httpRequestAborted = True
|
|
|
|
self._reply.abort()
|
|
|
|
try:
|
|
|
|
os.unlink("Data/shape_predictor_68_face_landmarks.dat.bz2")
|
|
|
|
except:
|
|
|
|
pass
|
|
|
|
try:
|
|
|
|
os.unlink("Data/shape_predictor_68_face_landmarks.dat")
|
|
|
|
except:
|
|
|
|
pass
|
2018-12-28 20:50:07 +08:00
|
|
|
if hasattr(self, "timer"):
|
|
|
|
self.timer.stop()
|
|
|
|
self.timer.deleteLater()
|
|
|
|
self.cap.release()
|
|
|
|
del self.predictor, self.detector, self.cascade, self.cap
|
|
|
|
super(OpencvWidget, self).closeEvent(event)
|
|
|
|
self.deleteLater()
|
|
|
|
|
|
|
|
def onCapture(self):
|
|
|
|
_, frame = self.cap.read()
|
|
|
|
|
|
|
|
minisize = (
|
|
|
|
int(frame.shape[1] / DOWNSCALE), int(frame.shape[0] / DOWNSCALE))
|
|
|
|
tmpframe = cv2.resize(frame, minisize)
|
|
|
|
tmpframe = cv2.cvtColor(tmpframe, cv2.COLOR_BGR2GRAY) # 做灰度处理
|
|
|
|
tmpframe = cv2.equalizeHist(tmpframe)
|
|
|
|
|
|
|
|
# minNeighbors表示每一个目标至少要被检测到5次
|
|
|
|
faces = self.cascade.detectMultiScale(tmpframe, minNeighbors=5)
|
|
|
|
del tmpframe
|
|
|
|
if len(faces) < 1: # 没有检测到脸
|
|
|
|
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
|
|
|
img = QImage(
|
|
|
|
frame.data, frame.shape[1], frame.shape[0], frame.shape[1] * 3, QImage.Format_RGB888)
|
|
|
|
del frame
|
|
|
|
return self.setPixmap(QPixmap.fromImage(img))
|
|
|
|
# 特征点检测描绘
|
|
|
|
for x, y, w, h in faces:
|
|
|
|
x, y, w, h = x * DOWNSCALE, y * DOWNSCALE, w * DOWNSCALE, h * DOWNSCALE
|
|
|
|
# 画脸矩形
|
|
|
|
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0))
|
|
|
|
# 截取的人脸部分
|
|
|
|
tmpframe = frame[y:y + h, x:x + w]
|
|
|
|
# 进行特征点描绘
|
|
|
|
rects = self.detector(tmpframe, 1)
|
|
|
|
if len(rects) > 0:
|
|
|
|
landmarks = numpy.matrix(
|
|
|
|
[[p.x, p.y] for p in self.predictor(tmpframe, rects[0]).parts()])
|
|
|
|
for _, point in enumerate(landmarks):
|
|
|
|
pos = (point[0, 0] + x, point[0, 1] + y)
|
|
|
|
# 在原来画面上画点
|
|
|
|
cv2.circle(frame, pos, 3, color=(0, 255, 0))
|
|
|
|
# 转成Qt能显示的
|
|
|
|
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
|
|
|
img = QImage(
|
|
|
|
frame.data, frame.shape[1], frame.shape[0], frame.shape[1] * 3, QImage.Format_RGB888)
|
|
|
|
del frame
|
|
|
|
self.setPixmap(QPixmap.fromImage(img))
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
2021-07-13 14:52:26 +08:00
|
|
|
cgitb.enable(format='text')
|
2018-12-28 20:50:07 +08:00
|
|
|
app = QApplication(sys.argv)
|
|
|
|
w = OpencvWidget()
|
|
|
|
w.show()
|
|
|
|
sys.exit(app.exec_())
|